Industry-leading low power, wide temp range and automotive compliant 32.768kHz Crystal Oscillator

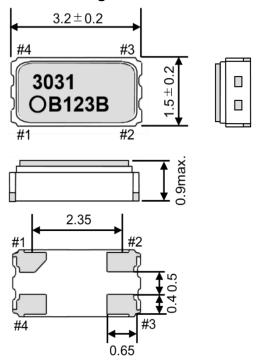
SG-3031CM / SG-3031CMA

Features

- •Built-in 32.768 kHz crystal unit allows adjustment-free efficient operation.
- Operation temperature -40 °C to +105 °C
- •Use of CMOS IC enables reduction of current consumption.
- •V_{IO} controls swing amplitude.
- •Conforms to AEC-Q100 (SG-3031CMA)

Applications

· SG-3031CM

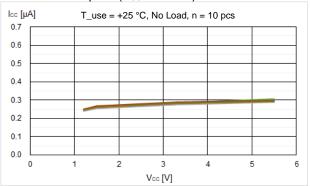

Industrial, Security, Smart Meter, Clock for Time counting and Sleep function

· SG-3031CMA

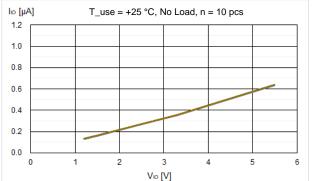
Infotainment and communication devices, Body (ECU*) Clock for Time counting and Sleep function.

*ECU: Electronic control unit

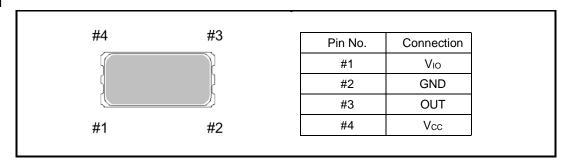
Outline Drawing



Description


Industry-leading low power, wide temp range and automotive compliant 32.768 kHz Crystal Oscillator, offered in 3.2 x 1.5 mm, 4 pin package.

Typical Performance


Current Consumption (Vcc Terminal)

Current Consumption (V_{IO} Terminal)

Terminal

1. Product Number / Product Name

1.1 Product Number

 $\begin{array}{l} \text{SG-3031CM} : \underline{X} \ \underline{1B00039} \ \underline{1} \ \underline{0001} \ \underline{16} \\ \text{SG-3031CMA} : \underline{X} \ \underline{1B00040} \ \underline{1} \ \underline{A001} \ \underline{16} \\ \underline{(1)} \ \underline{(2)} \ \underline{(3)} \ \underline{(4)} \ \underline{(5)} \end{array}$

(1) Crystal devices

(2) Model

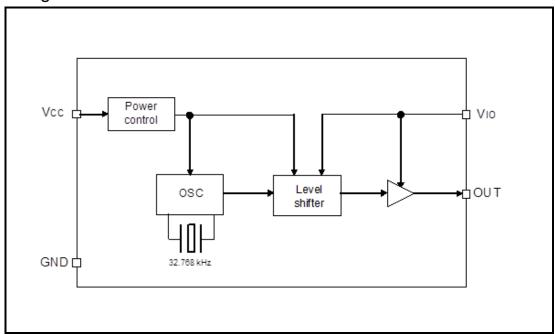
(3) Pb free code (1 : EU RoHS compliant / Pb free)

(4) Detail specifications

(5) Packing (16: 3 000 pcs/reel)

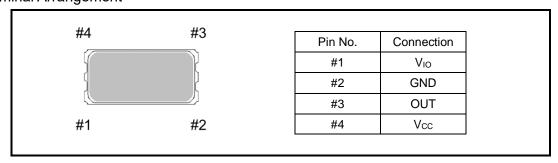
1.2 Product Name (Standard Form)

SG-3031 CM A 32.768000 kHz (a) (b) (d) 32.768000 kHz (c)


(a) Model

(b) Package type (CM: 3.2 x 1.5 x 0.9 mm size)

(c) Output Frequency


(d) For Automotive

2. Block diagram

3. Terminal Description

3.1. Terminal Arrangement

3.2. Terminal Function

Pin No.	Pin Name	Function	Comment			
#1	V _{IO}	OUT power supply	Power supply terminal for output buffer. The H level output from the OUT terminal is the voltage input to this terminal. This terminal can also be used as an Output Enable terminal. When setting Disable, $V_{IO} = 0 \text{ V}$.			
#2	GND	GND	ND Connect to the negative terminal (ground) of the power supply.			
#3	OUT	CLK Output	This is a CMOS 32.768 kHz output pin. By changing the input level of the V_{IO} terminal, the voltage at the H level output can be varied.			
#4	V _{cc}	Oscillator power supply	Power supply pin for driving the 32.768 kHz oscillation circuit.			

4. External Connection Example

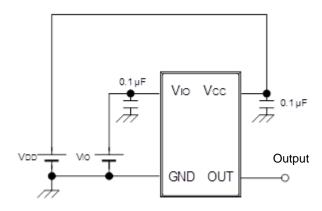
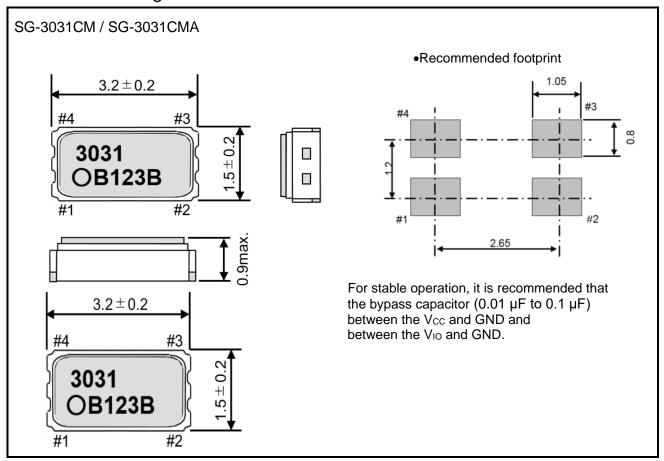
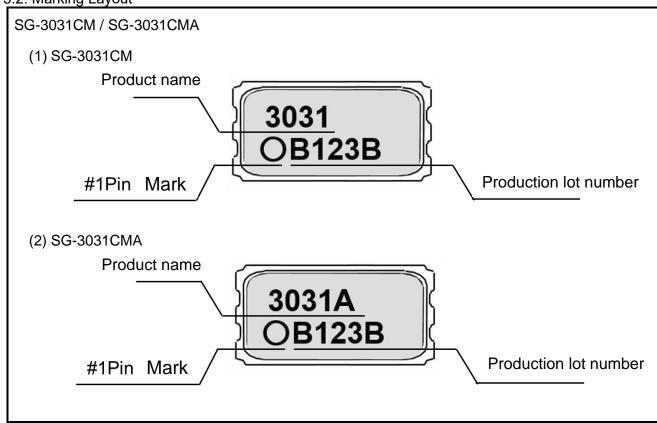



Figure 1 connection example


- 1) For stable operation, it is recommended that the bypass capacitor (0.01 μF to 0.1 μF) between the V_{IC} and GND and between the V_{IO} and GND.
- 2) When not using the V_{IO} function, connect the V_{IO} to V_{CC} .
- 3) Set $V_{IO} = V_{CC}$ when using 1.2 V \leq $V_{CC} <$ 1.5 V.

5. Outline Drawing / Marking Layout

5.1. Outline Drawing

5.2. Marking Layout

^{*} The display contents indicate the outline of the seal and display, and do not specify the details of the shape, size and position.

6. Absolute Maximum Ratings

GND = 0 V

lkom	Symbol	Specification			l lade	0 1
Item		Min.	Тур.	Max.	Unit	Comments
Supply voltage	Vcc, Vio	GND - 0.3		GND + 5.5	V	Vcc, V _{IO} Terminal
Storage temperature	Тѕтс	-55		+125	°C	storage as single product

7. Operating Conditions

GND = 0 V

lkom	Symbol	Specification			1.1-24	O comments
Item		Min.	Тур.	Max.	Unit	Comments
Supply voltage	Vcc	1.2	3.3	5.5	V	V _{CC} Terminal
Interface voltage	V _{IO}	1.2	3.3	5.5	V	V_{IO} Terminal Set $V_{IO} = V_{CC}$ when using 1.2 V \leq V _{CC} < 1.5 V.
Operating temperature	T_use	-40		+105	°C	

8. Frequency Characteristics

* Unless otherwise noted, GND = 0 V, T_use = -40 °C to +105 °C $$V_{\rm CC}$$ = 1.2 V to 5.5 V, $V_{\rm IO}$ = 1.2 V to 5.5 V

		T			vcc = 1.	$.2 \text{ V to } 5.5 \text{ V}, \text{ V}_{10} = 1.2 \text{ V to } 5.5 \text{ V}$
lto an	Symbol	Specification			11.5	
Item		Min.	Тур.	Max.	Unit	Comments
Output frequency	fo	32.768		kHz		
Frequency tolerance	f_tol		5 ± 23		× 10 ⁻⁶	T_use = +25 °C V _{CC} = 3.3 V
Frequency / temperature	fo-Tc	-120		+10	× 10 ⁻⁶	$T_use = -20 ^{\circ}C to +70 ^{\circ}C$ Reference to $V_{CC} = 3.3 V$, +25 $^{\circ}C$
characteristics		-0.035 x (T_use - 25) ² Typ.			× 10 ⁻⁶	Typ. Value Calculation from -40 °C to +105 °C
Frequency / voltage	fo-V _{CC}	-1		+1	× 10 ⁻⁶ / V	V _{CC} = 1.2 V to 5.5 V
coefficient		-5		+5	× 10 ⁻⁶ / V	V _{CC} = 1.2 V to 5.5 V
Start up time	t_str		0.15	0.45	s	Vcc = 1.5 V to 5.5 V T_use = -40 °C to +105 °C
Start-up time				1.0	S	Vcc = 1.2 V to 1.5 V T_use = -40 °C to +105 °C
Frequency aging *	f_age	-5		+5	× 10 ⁻⁶ / year	+25 °C, Vcc = 3.3 V, First year

^{*}Aging stability is estimated from environmental reliability tests; expected amount of the frequency variation.

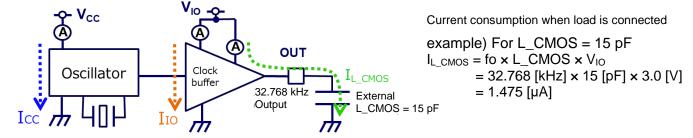
This does not intend to guarantee the product-life cycle.

9. Electrical Characteristics

9.1. DC Electrical Characteristics

* Unless otherwise noted, GND = 0 V, T_use = -40 °C to +105 °C V_{CC} = 1.2 V to 5.5 V, V_{IO} = 1.2 V to 5.5 V

	Symbol	Specification			•	$_{00} = 1.2 \text{ V to 5.5 V}, V_{10} = 1.2 \text{ V to 5.5 V}$
Item		Min.	Тур.	Max.	Unit	Comments
Current consumption (V _{CC} Terminal) *1)	Icc		0.29	0.65	μA	Vcc = 1.2 V to 5.5 V
			0.35	0.65	μΑ	No Load, $V_{10} = 3.3 \text{ V} \pm 0.3 \text{ V}$
Current consumption	lıo		0.6	1.1	μΑ	No Load, $V_{IO} = 5.0 \text{ V} \pm 0.3 \text{ V}$
(V _{IO} Terminal) *1)			2.0	2.7	μΑ	L_CMOS = 15 pF, V _{IO} = 3.3 V ± 0.3 V
			3.0	4.0	μA	L_CMOS = 15 pF, V _{IO} = 5.0 V ± 0.3 V
	V _{ОН}	V _{IO} - 0.4			V	V _{IO} = 1.5 V to 5.5 V I _{OH} = -400 μA
		V _{IO} - 0.2			V	V _{IO} = 1.2 V to 1.5 V Іон = -100 µA
Output voltage	VoL			GND + 0.4	V	V _{IO} = 1.5 V to 5.5 V I _{OL} = -400 μA
				GND + 0.2		V _{IO} = 1.2 V to 1.5 V I _{OL} = -100 μA

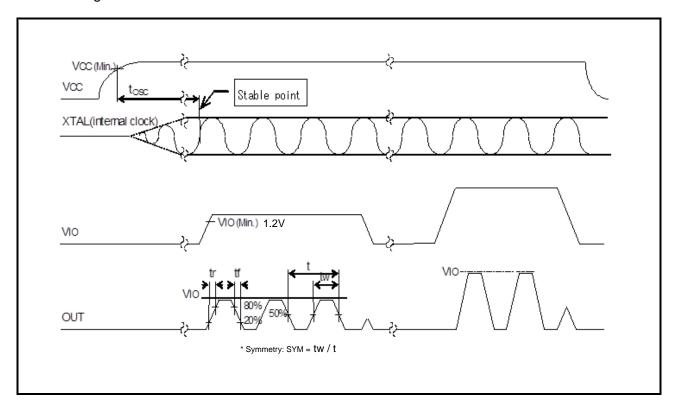

*1) notes)

Current consumed by the product : Icc, Iio, IL_CMOS

 I_{CC} : Current that flows through the V_{CC} pin and is consumed by the oscillation circuit.

lio : Current that flows to the Vio pin and is consumed by the output level control circuit (Clock buffer).

 I_{L_CMOS} : The current consumed by the load connected to the output terminal changes.


9.2. AC Electrical Characteristics

 * Unless otherwise noted, GND = 0 V, T_use = -40 °C to +105 °C $$V_{\text{CC}}=1.2\ \text{V}$$ to 5.5 V, $V_{\text{IO}}=1.2\ \text{V}$$ to 5.5 V

lan	Symbol	Specification			l lait	O
Item		Min.	Тур.	Max.	Unit	Comments
CMOS load condition	L_CMOS			15	pF	
Symmotry	SYM	45		55	%	$V_{IO} = 1.5 \text{ V to } 5.5 \text{ V}$ $V_{TH} = V_{IO} / 2$, L_CMOS = 15pF
Symmetry		40		60	%	V _{IO} = 1.2 V to 1.5 V V _{TH} = V _{IO} / 2, L_CMOS = 15pF
Rise time	tr / tf			200	ns	20 % $V_{IO} \leftrightarrow 80$ % V_{IO} L_CMOS = 15 pF V_{IO} = 1.2 V to 5.5 V
Fall time				100	ns	20 % $V_{IO} \leftrightarrow 80$ % V_{IO} L_CMOS = 15 pF V_{IO} = 1.8 V to 5.5 V

10. Timing Chart

10.1. Timing Chart For Each Terminal

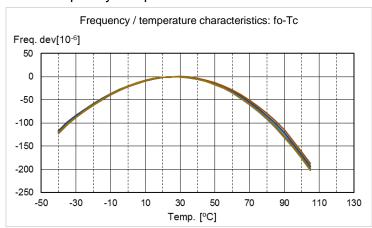
10.2. About V_{IO} Pin Settings

1) In order to output the clock from the oscillator supply voltage should be connected to V_{CC} and V_{IO} pins.

For 1.2 V \leq V_{CC} < 1.5 V, set V_{IO} = V_{CC}; otherwise, V_{CC} do not need to be equal to V_{IO}

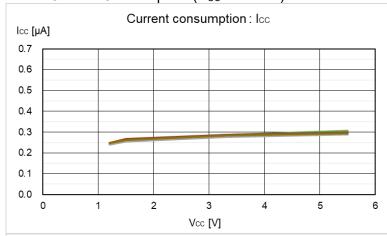
2) As shown in the timing chart above, the output level of the clock output from the OUT pin can be controlled by changing the voltage level applied to the V_{IO} pin.

V_{IO} voltage level = clock output level.

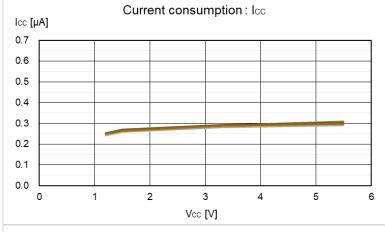

3) V_{IO} pin can also be used as an OE (Output enable) pin.

When $V_{IO} = 0$ V, the output is disabled.

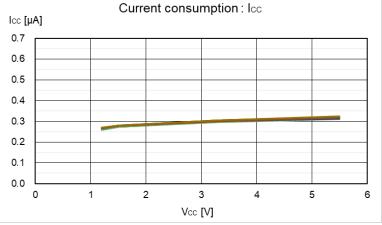
If V_{CC} is supplied, the internal oscillation circuit will be in operating, and the clock output can be obtained without having to wait for the V_{IO} power to be restored.


11. Characteristic Data

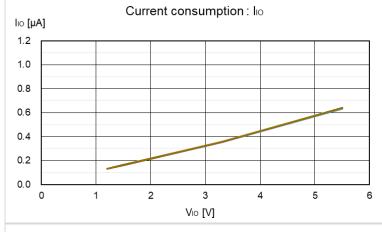
11.1. Frequency Temperature Coefficient



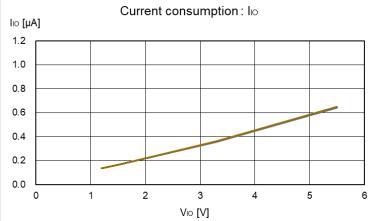
Test Conditions: No Load, n = 10 pcs.


11.2. Current Consumption (V_{CC} Terminal)

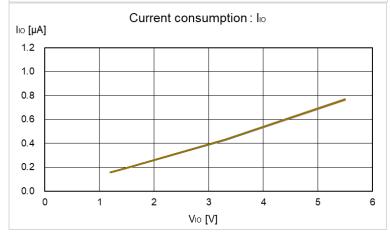
Test Conditions: No Load, T_use = +25 °C, n = 10 pcs.



Test Conditions: No Load, $T_use = +85$ °C, n = 10 pcs.

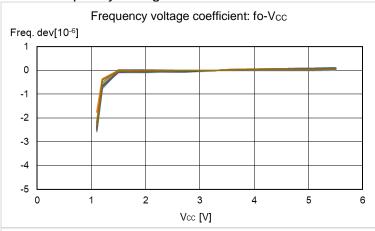

Test Conditions: No Load, T_use = +105 °C, n = 10 pcs.

11.3. Current Consumption (V_{IO} Terminal)

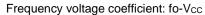

Test Conditions:

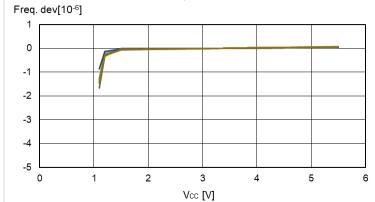
No Load, $T_use = +25$ °C, n = 10 pcs.

Test Conditions:


No Load, $T_use = +85$ °C, n = 10 pcs.

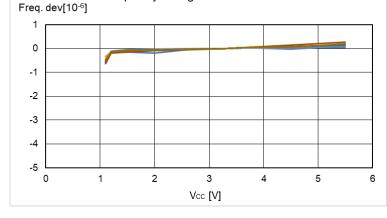
Test Conditions:


No Load, $T_use = +105$ °C, n = 10 pcs.


11.4. Frequency Voltage Coefficient

Test Conditions:

No Load, $T_use = -40 \, ^{\circ}C$, $n = 10 \, pcs$.



Test Conditions:

No Load, $T_use = +25$ °C, n = 10 pcs.

Frequency voltage coefficient: fo-V_{CC}

Test Conditions:

No Load, $T_use = +105$ °C, n = 10 pcs.

12. Moisture Sensitivity Level, Electro-Static Discharge


12.1. Moisture Sensitivity Level (MSL)

ltem	Class	Test Condition
MSL	LEVEL 1	JEDEC J-STD-020D.1

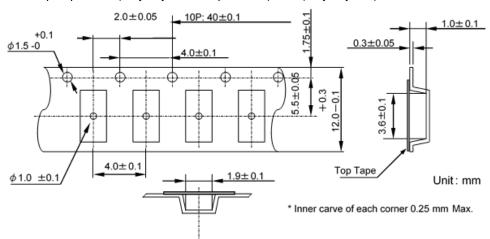
12.2. Electro-Static Discharge (ESD)

Item	Class	Test Condition
НВМ	2 000 V Min.	EIAJ ED-4701-1 C111A *100 pF, 1.5 kΩ, 3 times
MM	200 V Min.	EIAJ ED-4701-1 C111 *200 pF, 0 kΩ, 1 times
Latch-up	100 mA Min.	EIAJ ED-4701-1 C113

13. Reflow Profiles (follow to IPC / JEDEC J-STD-020D.1)

14. Packing Information

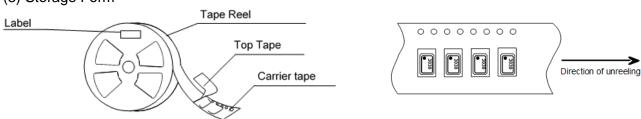
14.1. Taping Specification


Subject to EIA-481, IEC 60286, JIS C0806.

(1) Tape Dimensions

TE1204L

Material of the Carrier Tape: PS (Polystyrene)


Material of the Top Tape: PET (Polyethylene Terephthalate) +PE (Polyethylene)

(2) Reel Dimensions

(3) Storage Form

(4) Storage Quantity

The product number is X1B0003910001<u>16</u> (TG-3031CM), X1B000401A001<u>16</u> (SG-3031CMA). Packing quantity is defined by 14th and 15th digit of product number. The standard is "16", 3 000 pcs/Reel.

15. Handling Precautions

Prior to using this product, please carefully read the section entitled "Precautions" on our Web site (https://www5.epsondevice.com/en/information/#precaution) for instructions on how to handle and use the product properly to ensure optimal performance of the product in your equipment. Before using the product under any conditions other than those specified therein, please consult with Epson to verify and confirm that the performance of the product will not be negatively affected by use under such conditions.

In addition to the foregoing precautions, in order to avoid degrading the performance of the product, we strongly recommend that you DO NOT use the product under ANY of the following conditions:

- (1) Mounting the product on a board using water-soluble solder flux without completely removing the flux residue from the board. The residue of such flux is soluble in water or water-soluble cleaning agents and the residue, especially the residues which contain active halogens, will negatively affect the performance and reliability of the product.
- (2) Using the product in any manner that will result in any shock or impact to the product.
- (3) Using the product in places where the product is exposed to water, chemicals, organic solvent, sunlight, dust, corrosive gasses, or other materials.
- (4) Using the product in places where it is exposed to static electricity or electromagnetic waves.
- (5) Applying ultrasonic cleaning without advance verification and confirmation that the product will not be affected by such a cleaning process which may damage the crystal.
- (6) Using the product under any other conditions that may negatively affect the performance and/or reliability of the product.
- (7) Using a power supply with ripple may cause of incorrect operation or degradation of phase noise characteristics, so please evaluate before use. It is recommended to keep power ripple below 200mV_{P-P}. (8) Supply voltage should be increased monotonically.
- In addition, please do not power on at midpoint potential since that may cause malfunction or not output. When changing the Vcc voltage during operation, change it more slowly than 1 µs / V.
- (9) Frequency aging is calculated from environmental tests results to estimate the amount of frequency variation over time. This does not guarantee the length of the product's life-cycle.

Should any customer use the product in any manner contrary to the precautions and/or advice herein, such use shall be done at the customer's own risk.